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This paper presents the comparison of three methodologies to detect if some fans in a matrix are not working properly. These
methodologies are based on detecting fan failures by analysing acoustic images of the fan matrix, obtained using a planar array of
MEMS microphones. Geometrical parameters of these acoustic images for different frequencies are then used to train a support
vector machine (SVM) classifier, in order to detect the fan failures. One of the methodologies is based on the detection of the faulty
fan in the matrix, under the hypothesis that only one fan can fail. Other methodology is based on the detection of the specific
working situation of the matrix. And finally, the third methodology that is compared is based on determining individually if each
of the fans of the matrix is working properly or not. The comparison shows that this third methodology is the most reliable.

1. Introduction

In recent years, techniques for obtaining acoustic images
have been developed greatly and rapidly. At present,
acoustic images are associated with a wide variety of ap-
plications [1], such as nondestructive testing of materials,
medical imaging, underwater imaging, SONAR (SOund
NAvigation and Ranging), and geophysical exploration.
This work is related with one of these applications of
acoustical imaging, obtaining acoustic images of ma-
chinery to be used in condition monitoring and fault
detection tasks.

Fault detection lies in determining failures in machine
structural components or abnormal behaviours of a system
[2]. Condition monitoring is the process of monitoring a
condition parameter in machinery (vibration and temper-
ature), in order to identify a significant change, which is
indicative of a fault. The use of condition monitoring allows
maintenance to be scheduled [3] or other actions to be taken
to prevent consequential damages and avoid its conse-
quences, as a major failure.

One of the classic approaches for machinery condition
monitoring is based on making periodic vibration measure-
ments of the equipment and then comparing them to known
healthy/damaged data to assess the health status of the machine
[4-10]. Sometimes, vibrational measurements need a sensor
mounted on the machine, as accelerometers, and this presence
can imply disturbances on the machine response and perfor-
mance. As vibrational responses are related to acoustic emis-
sions, one possible solution to this problem is the analysis of the
related acoustic responses, instead of the vibrational ones. As
sound field contains abundant information related to fault
patterns, acoustic-based diagnosis with noncontact measure-
ment is an option to take into account [11-15] or combined
with vibrational information [16-18]. There are also some
studies that show methodologies that classify machinery failures
by analysing acoustic emissions [19-21]. Particularly, there are
many examples [22-25] of the use of microphone arrays in
acoustic imaging systems to measure this acoustic field. Ac-
tually, arrays of MEMS microphones are specially designed for
acoustical imaging, and there are also examples of the use of
microphone arrays to detect failures on machinery [26, 27].
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An array is an arranged set of identical sensors, fed in a
specific manner. The array beampattern can be controlled by
modifying the geometry of the array (linear and planar), the
sensor spacing, the response, the amplitude, and phase
excitation of each sensor [28]. By using beamforming
techniques [29], the array beampattern can be electronically
steered to different spatial positions, allowing spatial fil-
tering, i.e., the discrimination of acoustic sources on the
basis of their position.

The acronym MEMS (microelectromechanical system)
refers to mechanical systems with a dimension smaller than
1 mm, manufactured with tools and technology arising from
the integrated circuits (ICs) field, and used for the minia-
turization of mechanical sensors [30]. The application of
MEMS technology to acoustic sensors [31] has allowed the
development of high-quality microphones with high SNR
(signal-to-noise ratio), low power consumption, and high
sensitivity.

Due to the high diversity of applications of arrays of
MEMS microphones, the authors of this paper are working
on widening these uses to other fields. The authors already
had experience in the design and development of acoustic
arrays to be used in surveillance systems [32], in ambient-
assisted living [33], in an identification system based on
acoustic biometry [34-36], or in a high-resolution virtual
array [37]. The works [38-41] shown in this paper present
two novel contributions: (i) failure detection and condition
monitoring of a fan matrix, based on acoustic images and (ii)
the use of arrays of MEMS microphones to obtain these
acoustic images. These acoustic images are obtained by using
the modular and reconfigurable system [42] design by the
authors, which is based on a planar array module of 8 x 8
MEMS microphones.

A fan matrix, fan array, or fan wall is a system formed by
several fans located on a surface, working together in order
to improve the performance of one alone large fan with
lower power consumption. Any type of application that
requires specific temperature conditions is a candidate for a
fan matrix.

An analysis of the systems which uses fans matrices
reveals that they do not have a subsystem to control if any of
the fans that compose the matrix is down or is not working
properly. It would be very useful to detect these kinds of
situations. The authors have developed a novel fault diag-
nosis methodology to detect faulty behaviours on the fans
included in a matrix. This method is based on the analysis
and classification of the acoustic images, obtained from the
fan matrix, by means of using machine learning techniques.

On the first step of this research [38], a previous analysis
of the viability of using an array of 8 x 8 MEMS microphones
to obtain acoustic images of fan matrices was carried out,
obtaining positive results. In the subsequent research work
[39] carried out by the authors, these obtained acoustic
images of a matrix of fans were used to detect operation
failures on some fans. Promising results showed that geo-
metric parameters of these acoustic images, obtained using
the planar array of MEMS microphones, could be used to
detect if the fans are or are not working properly. The failure
detection methodology shown in this paper is based on a
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support vector machine (SVM) classifier [43] that uses these
geometrical parameters of the acoustic images of the fan
matrix, obtained using a 16x16 planar array of MEMS
microphones working at different frequencies.

On the basis of these results, this work analyses the
behaviour of different detection methodologies based on
detection if any of the fans of a matrix is not working
properly. These methodologies are based on geometrical
parameters of the acoustic images of the fan matrix and in
SVM classifiers.

2. Materials and Methods

2.1. Hardware Setup. An acquisition and processing system,
previously developed by the authors [42], has been used in
this work. This system is based on a 2D array of MEMS
microphones. In this work, as in a previous one [41], the
acoustic images acquisition system is composed of 4 uniform
planar arrays (UPA) modules of 8x82.125cm uniformly
spaced digital MEMS microphones connected to a myRIO
platform, as shown in Figure 1(a). Thus, the acoustic signals
acquisition is performed by a 16 x16 array, as shown in
Figure 1(b).

After the acquisition of the acoustic signals by the MEMS
microphones of the array, they are processed using dein-
terlacing, decimation, and filtering techniques, in order to
generate the acoustic images using wideband beamforming.
A set of NxN steering directions are defined, and the
beamformer outputs are assessed for each of these steering
directions. The acoustic images generated are then displayed
and stored in the system. The algorithms implemented in the
system are shown in Figure 2.

This work is focused on obtaining acoustic images of a
3 x 3 fan matrix, shown in Figure 3. Each of the fans used to
build the fan matrix is a Foxconn D90SM-12 3-Pin with 7
blades, as in the previous study [41]. As it is shown in
Figure 3, the fans of the matrix are controlled by a Kkmoon
8-channel relay interface board, which can be controlled by a
microcontroller. The interface board of the control system
allows turning on and off the fans of the matrix
independently.

For the tests, the fan matrix is placed 50 cm opposite the
16 x16 MEMS array, inside a 5mx3mx2.5m anechoic
chamber, as shown in Figure 4.

2.2. Previous Analysis of the Fan Matrix Acoustic Images.
The first step of this work was an analysis of the acoustic
signals received by the microphones of the array, in order to
characterize the noise generated by the fans of the matrix
and to select the frequencies used to obtain the acoustic
images of the fan matrix. As each fan has 7 blades and it
rotates at 3500 rpm, its noise has harmonics at 400 Hz and its
multiples. In this previous study [40], it was decided to work
with the acoustic images at the harmonic frequencies be-
tween 400 Hz and 4000 Hz (10 different working frequen-
cies). It was also observed that fan noise is not stationary or
periodic. Working with nonstationary signals is complex; so,
working with averaged signals is an easier option. The
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FIGURE 1: (a) Array module with myRIO and MEMS array board. (b) Complete acoustic acquisition system.
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FIGURE 2: Software algorithms diagram.

authors decided to capture 1000 acoustic images for each
specific test, in order to obtain these averaged acoustic
images for each fan matrix working situation and analyse
them to obtain the averaged behaviour of the fan matrix
noise.

Preliminary tests [38], which were carried out by the
authors, simulated a faulty fan matrix, i.e., with some fans
working and the others damaged. The objective of these tests
was to analyse the acoustic images of the fan matrix in these
certain circumstances. The first row in Figure 4 shows
captures of the interface of the relay board where a green
square represents a working fan, and a red square represents
a faulty one. The second row in Figure 4 shows the acoustic
images of three different faulty fan matrix situations:

(a) Only the fans on the corners of the matrix are
working (left column)

(b) The fans of the middle column of the matrix are
faulty (middle column)

(c) The fans of the middle row of the matrix are faulty
(right column)

Analysing these images, it can be observed that if several
fans of the matrix are not running, i.e., are faulty, the
acoustic image reveals this effect in some way.

In Figure 5(a), it can be observed that the acoustic image
shows sound only in the positions of the fans that are
working. In Figures 5(b) and 5(c), the acoustic images show
an absence of sound in the positions of the faulty fans, on the

middle column in Figure 5(b) and on the middle row in
Figure 5(c). Figure 5 confirms that the acoustic images of fan
matrices reveal the healthy/faulty character of the working
matrix. This fact is the basis of the work presented on this

paper.
3. Results and Discussion

This section describes the 3 fault detection methodologies
that are going to be compared. All these methodologies are
found on a machine learning algorithm, based on a linear
support vector machine (SVM). Geometrical parameters of
the acoustic images were used in this machine learning
algorithm. These geometrical parameters were the value and
the position (azimuth and elevation) of the maxima of the
acoustic images for each of the 10 selected working fre-
quencies, defined in Section 2.2. So, the SVM algorithms
have worked with 30 parameters.

Figure 6 shows a block diagram of the different steps that
form the methodologies that are compared in this work. The
differences between the methodologies are based, mainly, on
the definition of the SVM classification.

3.1. One Faulty Fan Detection Methodology. A set of tests
[40, 41] was carried out on previous studies, simulating a
matrix with only one faulty fan, and the corresponding
acoustic images were obtained. With these tests, the authors
worked under the hypothesis that the fans of the matrix fail



FiGure 3: Test fan matrix.

one by one. The problem with these images was that they do
not reveal, at a first glance, if there is a faulty fan, as the
images in Figure 4. But, in fact, they included information
about the faulty character of the matrix, although this in-
formation is not visible.

In this methodology, the SVM algorithm was used to
detect the faulty fan position. The employed SVM worked
with 10 different classes: 1 class represented a healthy
matrix (all working fans), and the other 9 classes repre-
sented the 9 possible one faulty fan situations. As it was
pointed previously, the SVM algorithm used 30 geomet-
rical parameters of the acoustic images. In these tests, it
was noticed that if one fan failed, the maximum position
and value of the acoustic image changed. One of these
effects is shown in Figure 5, which shows the maximum
positions of the acoustic images, for the 10 defined
working frequencies of the 9 one faulty fan situations [40].
In Figure 7, the real position of the corresponding faulty
fan is shown as a cross.

The obtained accuracy rate by the SVM algorithm, trying
to detect the faulty fan, was 95.6%. This result showed that
the purposed methodology was reliable when one fan of the
matrix failed because it was accurate for detecting the po-
sition of the faulty fan.

Although it is really unusual that more than one fan fails
at the same time, a set of tests was carried out in order to
study if this defined methodology was robust enough in the
presence of unexpected situations, i.e., if the number of
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FIGURE 4: Experimental setup block diagram.

faulty fans in the matrix increased [41]. In these new tests,
the SVM classifier was trained with the geometrical pa-
rameters of the acoustic images of the one faulty fan working
situations, and after that, it was validated with the geo-
metrical parameters of the acoustic images of different two
faulty fans working situations.

The objective of these tests was to analyse if the SVM
algorithm, trained to detect only one faulty fan, was robust
enough to detect any of the two faulty fans of the working
situations. With a robust methodology, if one of the two
faulty fans was detected, it would be repaired or replaced.
After that, when the matrix began to run again, the other
faulty fan would be detected and replaced. In these tests, if
the algorithm did not detect any of the two faulty fans, it was
considered that the algorithm failed. The results obtained in
these tests showed that if the distance between the two faulty
fans increased, the accuracy of the algorithm to detect that
one of them failed or decreased. Table 1 shows the accuracy
rates of the algorithm, trained to detect only one faulty fan,
and validated under only one faulty fan situations and under
different two faulty fans working situations. In these tests,
although in most cases the SVM classifier was not able to
correctly identify which were the faulty fans, it always alerted
if the matrix was not working properly.
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FIGURE 5: Acoustic images of faulty fan matrices: (a) only the fans on the corners are working, (b) the fans of the middle column are faulty,
and (c) the fans on the middle row are faulty.
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FIGURE 7: Maximum positions of the acoustic images of fan matrix with one faulty fan (the position of this faulty fan is represented with a
cross). (a) Fan 1. (b) Fan 2. (c) Fan 3. (d) Fan 4. (e) Fan 5. (f) Fan 6. (g) Fan 7. (h) Fan 8. (i) Fan 9.

TaBLE 1: SVM accuracy rates of the robustness tests for the one faulty fan detection methodology based on training the SVM with one faulty

fan parameters.

One faulty fan tests

Accuracy rate (%)

(1) Faultyfaulty fan validation
(2) Faultyfaulty fans validation

Case A: horizontal/vertical step distance (no central fan)
Case B: horizontal/vertical step distance (with central fan)
Case C: diagonal step distance

Case D: knight movement distance

Case E: row/column distance

Case F: diagonal distance

95.6

48.3
44.1
23.5
14.7
14.2
10.9

afsti=als e i,
A

e

3.2. Working Situation Detection Methodology. As the one
faulty fan detection methodology is not considered to be
robust enough under unexpected situations (more than one
faulty fan), the following implemented tests have been aimed
to train the SVM algorithm to be able to detect any of the 512
different working situations of the fan matrix (512 = 2°, since
the matrix is composed of 9 fans, each one with 29 different
working states: working/healthy or faulty). These 512
working situations are considered from the perfectly
working situation (all 9 working fans) to the impossible

working situation (all 9 faulty fans), including all the
remaining ones (one faulty fan, two faulty fans, and three
faulty fans). So, this SVM algorithm works with 512 classes
and the same 30 geometrical parameters than in the previous
methodology used.

The obtained accuracy rate by the SVM algorithm in
these tests has been 45.3%. This result shows that this
purposed methodology is not reliable. Training the SVM
algorithm in order to be able to discriminate among 512
different classes is not a reliable option. The employed data
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TaBLE 2: SVM accuracy rates of each classifier related to one of the
fans of the matrix.

SVM classifier Accuracy rate (%)

Fan 1 99.4
Fan 2 91.0
Fan 3 98.0
Fan 4 91.4
Fan 5 95.4
Fan 6 98.9
Fan 7 90.7
Fan 8 91.6
Fan 9 98.5

(30 parameters for each test) is not enough to discriminate
among so many classes (512 different working situations).

3.3. Individual Faulty Fan Detection Methodology. So, the
next idea has been the definition of a methodology based on
9 independent SVM classifiers, each one related with a
specific fan of the matrix. Each classifier has been trained to
detect if the corresponding fan is working or not, that is, to
detect 2 different classes. Again the methodology uses 30
geometrical parameters to detect if the matrix is not working
properly. Table 2 shows the accuracy rates obtained by each
of the 9 SVM classifiers related to a specific fan of the matrix.
These results show that the accuracy of each of the SVM
classifiers is high, given that all the accuracy rates are higher
than 90%.

The problem with this methodology is that despite the
individual accuracies of each of the 9 SVM classifiers being
high, the global accuracy of this methodology is not so high.
The global accuracy rate of this methodology, with the 9
SVM classifiers working properly at the same time (all of
them detecting if the corresponding fan is working properly
or not), falls to a 65.7% value. It seems that detection failures
of the SVM classifiers do not match between them. This
global value takes into account all the possible matrix fail-
ures, the 512 possibilities.

It has been previously noticed that a failure situation in
the matrix with more than two faulty fans is not probable.
So, a group of tests is performed to assess the accuracy of this
individual faulty fan detection methodology when there are
only two faulty fans that have been carried out. The obtained
global accuracy of the methodology for all these working
situations is 87.9%, and it is shown in Table 3. If this value is
compared with the accuracy values obtained with the one
faulty fan detection methodology validated with two faulty
fan working situations, shown in Table 1, this new meth-
odology improves the detection accuracy. Previous values on
Table 1 showed accuracy rates between 10.9% and 48.3%,
which are highly lower than the 87.9% accuracy rate ob-
tained in these new tests.

In order to be able to compare the shown methodologies,
the same two faulty fans working situations as those shown
in Table 1 have been tested. These working situations
consider different two faulty fans separations or positions:

(i) Case A: two fans located on both ends of the largest
diagonal of the matrix

(ii) Case B: two fans located on both ends of one row or
one column of the matrix

(iii) Case C: two fans located on both ends of the “L-
shaped” (Knight) movement in chess

(iv) Case D: two fans separated one diagonal step

(v) Case E: one fan in the centre of the matrix, and the
other one separated one vertical/horizontal step

(vi) Case F: two fans separated one vertical/horizontal
step, and none is in the centre of the matrix

The obtained accuracy rates for the different tested cases
are shown in Table 3. It can be observed that this meth-
odology is robust enough to detect the corresponding two
fans that are not working properly. In these cases, the ob-
tained accuracy rates show high values between 84.3% and
92.5%.

4, Discussion

Three different methodologies to detect faulty fans in a fan
matrix have been defined. These methodologies are based on
the maxima positions and values of the acoustic images
obtained for the fan matrix at different working frequencies.
A summary of these methodologies is shown in Table 4.

The first defined methodology is based on detecting one
faulty fan. This methodology is highly accurate if only one
fan is not working properly, but it is not robust enough
under unexpected situations. If one more fan fails, the ac-
curacy rate of the methodology in detecting one of the two
faulty fans fails to values between 10.6% and 48.3%.

The second methodology is based on detecting the
specific working situation of the fan matrix. As the matrix
has 9 fans, 512 different working situations can be defined.
The accuracy rate of this methodology is 45.3%. This value
shows that, as for the previous case, this methodology is not
robust enough either.

The last implemented methodology is based on detecting
if each of the fans is or not working properly. This meth-
odology uses 9 SVM classifiers, instead of only one, but each
classifier is trained to distinguish between only two classes (a
faulty fan or a healthy fan). The individual accuracy rates of
the SVM classifiers show high values between 90.7% and
99.4%. This methodology is not accurate enough to dis-
tinguish a matrix failure among its 512 possible faulty sit-
uations. In this case, this methodology shows a 65.7%
accuracy rate value. Although it is not a high accuracy value,
it is higher than the one obtained for the methodology based
on detecting the working situation of the fan matrix. But it is
not a problem because the probability of having a fan matrix
with more than two faulty fans is not high. Under this
consideration, this methodology is a proper option, given
that it shows high accuracy rate values in detecting faulty
fans under two faulty fan working situations. In these cases,
the methodology shows accuracy rate values between 84.3%
and 92.5%.
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TaBLE 3: SVM accuracy rates of the individual faulty fan detection methodology with two faulty fans working situation of the matrix.

Individual faulty fan detection methodology: two faulty fans tests

Accuracy rate (%)

Global
Two faulty fans separation

Case A: horizontal/vertical step distance (no central fan)
Case B: horizontal/vertical step distance (with central fan)
Case C: diagonal step distance

Case D: knight movement distance

Case E: row/column distance

Case F: diagonal distance

as=fass 89.5
a==fass 89.3
a==fass 84.3
a==fass 89.6
=EEgEE. 84.7

P B 925

TABLE 4: SVM accuracy rates of the detection methodologies.

SVM A ‘
Methodology . . ccuracy rate
. (%)
classifiers  classes
One faulty fan detection
On.e fa}llty fan 1 10 95.6
validation
Two faulty fan
validation (106-48.3)
Working situation detection
512 working 1 512 453
situations
Individual faulty fan detection
IndlYldual SVM 9 ) (90.7-99.4)
classifier
5.12 wprkmg 65.7
situations
T.wo f.aulty fans 7.9
situations

5. Conclusions

This paper shows the comparison of three fault detection
methodologies developed to identify if the fans in a matrix
are not working properly. These methodologies are based on
geometrical parameters of the acoustic images of the fan
matrix and in support vector machine algorithms.

The most promising methodology is based on 9 SVM
classifiers, each one related to a specific fan of the matrix.
Each individual classifier detects if the corresponding fan is
or not working. These high accuracy rate values shown by
this methodology balance out the complexity increment
related to using a SVM classifier for each fan of the matrix,
instead of only one, as in the other defined methodologies.

It could be pointed that the tests carried out in this study
must be widen with other tests including background noise
or even objects near the assembly, in order to create surfaces
where the sound generated by the fans could be reflected.
These tests would simulate a more real operation situation
because an operative fan matrix is not isolated of the sur-
roundings nor even placed inside an anechoic chamber.

As near future work, a new methodology which com-
bines the information of the maxima and other features or
geometrical parameters of the acoustic images, such as the
centroids or the energy, could be defined. In this case, if the

SVM algorithm gets more information to discriminate be-
tween the different working situations, it is expected to be
able to improve its accuracy rate. Also as a midterm future
work, the extension of the methodology is to be able to
detect/classify/identify specific fan failures such as not only
to detect if the fans are working or not but also to detect the
reason why the fan is not working properly, that is, if it is not
rotating at the right speed, if some of the blades are broken,
and if the shaft is misaligned. So, the next step in this re-
search is the fan future work which could be the comparison
of this extended methodology with other methodologies
based on rotating machines that classifies specific failures,
such as MSAF methodologies.
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