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Due to the widespread use of acoustic arrays, optimisation techniques for array design, focused on
improving array performance, have been widely published. This paper exploits the statistical relation
between different measures of sidelobe levels and the spacing of elements in random linear arrays made
up of a small number of sensors. This paper defines the methodology to obtain maximum probability
functions, associating array geometry and performance. These maximum probability functions allow a
pre-selection of those array geometries that are more likely to be associated to specified sidelobe level
values. This pre-selection results in a significantly reduced computational burden.
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1. Introduction

There are many solutions based on the use of acoustic arrays,
mostly microphone arrays, such as the analysis of wheel/rail noise
radiation [1], localization of acoustic sources [2], analysis of diffuse
fields [3], or sound source imaging of flying targets [4]. With the
spread of sensor arrays, many studies on pattern synthesis tech-
niques were developed in order to improve array performance.
First, these techniques were based on the variation of sensor exci-
tations (amplitude and phase) [5], keeping sensors uniformly dis-
tributed. Then, techniques based on varying sensor positions,
with uniform sensor excitations, were developed [6,7], and after
that, algorithms that optimise simultaneously sensor excitations
and positions [8] came up.

Sidelobe levels can be reduced by varying sensor positions,
either following certain rules [6] (aperiodic arrays) or in a random
manner [7], in this case, mainbeam width can increase [9], it must
be handled with care. Random arrays offer more control over the
array beampattern than aperiodic ones [7]. The study shown in this
paper is based on varying randomly only sensor positions to
improve array performance, so the amplitudes of sensor excita-
tions have been kept constant and equal to 1.

Over the years, several methods for array geometry design have
been developed. It is clear that there is a relationship between sen-
sor positions, i.e. array geometry, and array sidelobes performance
[7]. Establishing such a relationship in a statistical sense is the
starting point of this work; and once these relationships are
All rights reserved.
defined, the next step is to analyse them to find their potential
applications on pattern synthesis techniques.

Despite the multiple theoretical studies of random arrays, such
as those carried out by Lo [10], these studies are centred in large
arrays. These works show techniques that converge when applied
to arrays with a large number of sensors. They are not valid for
small arrays. Thus, the analysis shown in this paper is centred in
arrays with a reduced number of elements. This paper defines rela-
tionships between some array geometric features, based on the
array sensor spacing, and the array performance, based on its side-
lobe levels. Employing these relations on array design techniques
can reduce the computational burden related to the array design
process. These relationships can be used to pre-select only those
arrays whose geometry is suitable to reach the expected
performance.
2. Array characterization

In this analysis, random linear arrays with omnidirectional sen-
sors whose positions follow a uniform random distribution have
been selected. A fixed spatial aperture was used in this analysis,
in order to fix the mainbeam width. This width depends mainly
on the overall array length [10], called spatial aperture. Thus,
avoiding mainlobe widening allows the analysis of array perfor-
mance only on the basis of its sidelobe level values. Spatial aper-
ture of a classic Uniform Linear Array (ULA) with k/2 sensor
spacing has been taken as reference for all random arrays. The spa-
tial aperture of a ULA is defined as: Ap = (N � 1) � Xi, being N the
number of array sensors and Xi the sensor spacing, which, in this
case, is constant and equal to k/2.
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Maximum sensor spacing is limited by this spatial aperture con-
straint, while minimum spacing is limited by the physical dimen-
sions of the array elements. Mutual coupling is avoided by
forcing minimum spacing to be greater than k/4.

2.1. Sidelobe parameters

Most representative sidelobe levels have been chosen for this
analysis:

� First sidelobe level (SLL1): It is the largest level of the pair of
sidelobes that are closer to the mainlobe, on the right and on
the left.
� Maximum sidelobe level (SLLmax): It is the level of the largest

sidelobe that is shown in the beampattern. This sidelobe param-
eter includes the grating lobe concept [9].
� Average sidelobe level (SLL): It is the average of all levels of the

sidelobes in the beampattern.

All of them are expressed in decibels, and all of them are relative to
the level of the main beam.

2.2. Array geometric features

The array geometric parameters selected for this study are
based on a linear array of N sensors with Xi spacing between con-
secutive sensors (X = [X1 X2 . . . XN�1]). Specifically for this research,
the following geometric features have been chosen

� Spacing standard deviation

rX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðN � 1Þ� �

XðN�1Þ

i¼1

ðXi � XÞ2
vuut ð1Þ

where X is the spacing mean:

X ¼ ½1=ðN � 1Þ� �
XN�1

i¼1

Xi ð2Þ

� Maximum spacing

Xmax ¼max
N�1
ðXiÞ ð3Þ

Previous studies [11] showed that minimum sensor spacing is
not an appropriate parameter to be related to the array sidelobe
levels.

These geometric features have been calculated for each array in
order to find the relationship of each one to each sidelobe param-
eter, getting six different relation pairs.
Fig. 1. 2D histogram.
3. Method

Once the parameters of the analysis are specified, the next
procedure is:

� M random linear arrays Am (0 6m 6M � 1) are created,
fulfilling the defined spatial aperture and sensor minimum
spacing constraints.
� S and G are defined as the variables that are associated to

sidelobe levels and geometric features, respectively.
� The (S,G) set of values is quantified, being Ds and Dg the

sidelobe level and geometric feature quantification intervals,
respectively. The indexes associated to a (S,G) pair of values
are defined as: i = E[S/Ds] and j = E[G/Dg], being E[�] the integer
part function.
� A discrete two-dimensional histogram, F(i,j), is defined. This
histogram represents the number of random arrays whose (S,G)
pair of values is in each interval: Fði; jÞ ¼ count

06m6M�1
ðAm j i�

Ds 6 Sm 6 ðiþ 1Þ Ds; j � Dg 6 Gm 6 ðjþ 1ÞDgÞ.

Fig. 1 shows, as an example, one of the six 2D histograms de-
fined for the analysis of random linear arrays with N = 8 and Ap

= 7k/2. It is represented using contour lines in such a way that dar-
ker lines show higher values of the histogram, representing a high-
er density of arrays, and lighter lines show lower values,
representing a lower density of arrays.

In this histogram, it can be observed that, although array sensor
positions follow a uniform random distribution, the distribution
of the frequency of occurrence is not uniform. This fact is shown
in the histogram by means of a non uniform density of arrays. In
the histogram, there are areas formed by cells with a high number
of arrays, where there is a high probability to find random arrays
with a given geometric and sidelobe level pair of values. It can also
be observed that there are also areas with cells with a null value,
meaning that it is very unlikely, or even impossible, to obtain
arrays with specific geometric and sidelobe level pairs of values.
This histogram also shows that as the array performance improves,
i.e. sidelobe level values decrease, the frequency of occurrence
decreases, so the number of possible arrays that offer good perfor-
mance values decreases.

To extract the meaningful information of these 2D histograms,
one geometric value is associated to each discrete sidelobe level
value, according to the following methodology:

– Each i � Ds is associated to a j � Dg value so that, for each i value,
F(i,j) is maximized.

– A continuous one-dimensional function is defined interpolating
the associated j � Dg values on a least square sense. These func-
tions are called ‘‘maximum probability functions’’. An example
represented with a black striped line in the histogram is shown
in Fig. 1.

In this way, the two-dimensional information of the histograms
is reduced to linear functions which allow, on the basis of maxi-
mum probability values, an easy, direct and effective procedure
for array selection.

As an example, the left image of Fig. 2 shows the three maxi-
mum probability functions that relate Xmax to each of the three
sidelobe levels of the analysis for random linear arrays with N = 8
and Ap = 7k/2.



Fig. 2. Maximum probability functions. Effective area definition. SLL interrelationship procedure.

Table 1
Most probable limits of sidelobe level values.

Maximum (dB) Minimum (dB)

SLL1 �5 �22
SLLmax �5.3 �17
SLL �7 �21
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4. Analysis of the relationships

Three maximum probability functions are shown in the same
figure, associating the three defined sidelobe level parameters with
the same geometric feature. Thus, studying the geometrical fea-
tures of a set of arrays, a pre-selection of those with a certain side-
lobe level performance can be carried out. Also, from a pre-defined
sidelobe level, a set of constraints on the geometry of the array can
be established.

The following information can also be inferred from these
figures:
4.1. Most probable limits of sidelobe level values

Most probable limits of sidelobe level values for random linear
arrays formed by N sensors and with a (N � 1)k/2 spatial aperture
can be extracted from these curves. As an example, the specific
limits for random arrays with N = 8 and Ap = 7k/2 are shown in
Table 1.

These minimum limits are very interesting in array design,
since an improvement on array performance is equivalent to a
reduction of its sidelobe levels. On the other hand, maximum limits
show the most probable worst behaviours of sidelobes that could
be found working with random linear arrays with certain number
of sensors and spatial aperture.

Looking at Table 1, it can be observed that SLL1 and SLLmax min-
imum limits, for random linear arrays with N = 8 and Ap = 7k/2
(�22 dB and �17 dB, respectively), are different; probably because
the highest sidelobe is not usually the first one in random arrays
with a defined spatial aperture and minimum spacing constraints.
4.2. Sidelobe level interrelationship

In order to establish relationships between parameters, an
‘‘effective’’ working area has been defined on the y-axis (geometric
parameter) for each set of functions. In this ‘‘effective area’’, a given
value of the geometric parameter is related to a certain value of
each sidelobe level of the study. The effective area covers from
the lowest of the highest geometric values related to each of the
three sidelobe levels to the highest of the corresponding three low-
est geometric values. An example of the definition of one of these
effective areas is shown in Fig. 2.

Once the effective area is defined, the next step is to create a
procedure to interconnect these three sidelobe levels, from a
specific value of one of the defined geometric parameters. This pro-
cedure has the following steps:

� A value for any of the three sidelobe levels is specified.
� From this value, its corresponding maximum probability value

of the geometric feature is obtained.
� Then, from this geometric feature value, maximum probability

values of the remaining two sidelobe levels are acquired.

An example of this procedure, relating SLL values through the
corresponding Xmax value for random linear arrays of eight sensors
with a 7k/2 spatial aperture, is shown in the right image of Fig. 2:

(a) First, a first sidelobe level (SLL1) value is specified. In this
example, SLL1 = �18 dB.

(b) From the function that connects sidelobe level (SLL1) to the
geometric feature (i.e. Xmax), i.e. the solid curve, the Xmax

value that corresponds to the fixed SLL1 value is acquired.
In this example, Xmax = 0.763k.

(c) Once this most probable value of the geometric feature is
specified, it is necessary to obtain the maximum probability
values of the two remaining sidelobe levels (SLLmax and SLL)
related to the acquired value of the geometric feature. In the
example, Xmax = 0.763k corresponds to a value
SLLmax = �10.3 dB - the dashed curve - and to a value
SLL = �13.5 dB – the dash dotted curve.

This procedure establishes an interrelationship between these
three sidelobe levels. These functions show a way to connect most
probable values of sidelobe levels through an array geometric fea-
ture. This connection could be really useful in array design.

5. Case study

These curves can be used to establish constraints on the array
geometry, when an array with certain SLL performance is required.
Thanks to these constraints, the number of arrays to be evaluated



Fig. 3. Beampattern of the designed array.
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can be reduced, and therefore the computational burden associ-
ated to the design technique as well.

This section shows an example of an array design algorithm
that is based on a massive search over all those microphone arrays
with eight sensors, a 3.5k spatial aperture and a 0.28k minimum
sensor spacing (½ in. for a 7.5 kHz frequency, typical values for
microphone size and work frequency). All these arrays have been
generated varying element positions with 1 mm steps, i.e. a man-
ually feasible variation of an element position, and fulfilling some
geometric constraints based on the relationships defined in this
work.

The purpose of this search is finding the best microphone array
with a SLL1 value better than �18 dB and improving SLLmax as
much as possible, in a ±60� spatial angle, and according to the
experimental quality function: Q = (SLL1 � 18) + (SLLmax � 10.5)2

[12]. This quality function has been optimised to track groups of
speakers close together. In these situations, low SLL1 values are
necessary to be able to differentiate each speaker more accurately.

The geometric values associated to SLL1 = �18 dB, according to
the maximum probability functions, are rx = 0.172k and
Xmax = 0.765k, and the SLLmax value associated to these defined geo-
metric features is �10.5 dB. According to the geometric constraints
over the required array, its rx and Xmax values must be included in
the intervals centred in the geometric values associated to the de-
fined SLL1 value (�18 dB), in this case:

ð0:172k� nrÞ 6 rx;array 6 ð0:172kþ nrÞ and ð0:765k� nXmaxÞ
6 Xmax;array 6 ð0:765kþ nXmaxÞ;

where nr and nXmax are the interval widths for rx and Xmax, respec-
tively. These interval widths are defined as the 2% of the total width
of the effective area for the corresponding geometric parameter.

From among the 2 � 108 valid arrays that have been generated,
only 3.8 � 106 of them fulfil the geometric constraints. Thus,
thanks to these constraints over the geometry, computational bur-
den has been reduced by a 52.6 factor if this computational burden
is considered to be proportional to the number of arrays to be
evaluated.

Fig. 3 shows a comparison between the beampattern of the ar-
ray that shows the best performance according to the defined qual-
ity function (solid line) and the beampattern of a ULA with eight
sensors and an equivalent 3.5k spatial aperture (dashed line). The
SLL values of the designed array are SLL1 = �21.04 dB and
SLLmax = �17.86 dB, and the corresponding geometric features are
Xmax = 0.77k and rx = 0.17k. The SLL values of the ULA are
SLL1 = SLLmax = �13.23 dB, and the corresponding geometric fea-
tures are Xmax = 0.5k and rx = 0. It can be observed that in the
angular excursion of interest, i.e. ±60�, the designed array has bet-
ter SLL1 and SLLmax values. Furthermore, this designed array has the
desired array characteristic, i.e. a low SLL1 value. This characteristic
allows a more accurate differentiation of speakers close together.

Fig. 3 also shows a comparison between the beampattern of this
designed array and the beampattern of another optimised array,
the one designed by Yu in [13] (dash dotted line). The SLL values
of Yu’s array are SLL1 = �17.38 dB and SLLmax = �16.93 dB. Even
though Yu’s design focuses array quality on a maximum sidelobe
level as low as possible, it can be observed that the designed array
shows lower sidelobe levels although the designed array is made
up of eight sensors and Yu’s array has ten sensors.

6. Conclusions

The performance offered by acoustic array-based solutions is
conditioned to the performance of the array itself. The search of
an array design with the best performance is associated to a com-
putational burden. Thus, reducing this computational burden
means a significant improvement in the design technique and
therefore of the cost of the implemented solution.

This paper exploits the statistical relationship between array
geometry and performance. Specifically, this paper explains a
methodology to obtain maximum probability functions that give
a direct association, in a statistical sense, between different mea-
sures of sidelobe levels and the spacing of elements in random lin-
ear arrays with a small number of sensors. Sidelobe levels chosen
for this analysis are first sidelobe level (SLL1), maximum sidelobe
level (SLLmax) and average sidelobe level (SLL), and the correspond-
ing array geometric parameters are standard deviation of sensor
spacing (rx) and maximum spacing (Xmax). One of the novelties
of this work is the relationship among these three sidelobe level
parameters in the same analysis.

From these functions, most probable limits of sidelobe level val-
ues for random linear arrays can be determined and also a sidelobe
level interrelation can be established. With this interrelation, fixing
a value of one of the considered sidelobe levels, the value of the
sensor spacing parameters that are most probable to offer this
fixed sidelobe level value can be obtained. And, through these
spacing parameters, the most probable values associated to the
other two sidelobe levels are established.

These relationships can be employed to pre-select those arrays
more likely to offer some specific sidelobe level performance by
analysing their sensor spacing parameters. In this way, computa-
tional burden can be reduced in an array design optimisation,
avoiding the calculation of the beampattern for those arrays
rejected during the pre-selection procedure. These geometry vs.
performance relationships can also be employed to generate initial
element distributions on optimisation algorithms, such as Genetic
Algorithms and Simulated Annealing. In optimisation processes, a
good selection of initial conditions is be very important in order
to guarantee stability and fast convergence.
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